ПРОГНОЗИРОВАНИЕ ЭЛЕКТРИЧЕСКОЙ НАГРУЗКИ СЕЛЬСКОХОЗПРОИЗВОДИТЕЛЕЙ С ПОМОЩЬЮ НЕЙРОСЕТЕВЫХ МОДЕЛЕЙ

Серебряков Николай Александрович, <u>na_serebryakov@altke.ru</u>

Аннотация:

Данная статья посвящена вопросам сравнительного анализа точности краткосрочного прогнозирования почасового электропотребления групп точек поставки сельхозпроизводителей, разработанных нейросетевых моделей и метода экспертных оценок. Произведена технико-экономическая оценка эффекта от внедрения разработанного решения на примере гарантирующего поставщика электроэнергии АО «Алтайкрайэнерго», зона деятельности которого приходится преимущественно на сельскую местность. Данная работа представляет интерес для специалистов энергосбытовых предприятий и гарантирующих поставщиков электроэнергии, занимающихся покупкой электроэнергии на оптовом рынке электроэнергии и мощности, также исследователей в области обработки больших объемов данных и прогнозирования временных рядов.

Ключевые слова: факторное пространство, потребление электроэнергии, краткосрочное прогнозирование электрической нагрузки, нейронная сеть, временной ряд, гарантирующий поставщик, метеофакторы, суточный график электрической нагрузки, оптовый рынок электроэнергии и мощности, точность прогнозирования.

Важнейшим условием надежного функционирования Единой энергосистемы России (ЕЭС) является соблюдение в любой момент времени баланса потребления и выработки электроэнергии. Так как, большая часть генерирующего оборудования в энергосистеме маломаневренное, то есть пуск в работу данного оборудования занимает более 8-ми часов, то ключевое значение при управлении режимом функционирования энергосистемы имеет прогнозная информация о почасовом электропотреблении всех потребителей. В связи с этим, покупка электроэнергии на оптовом рынке электроэнергии и мощности (ОРЭМ) предполагает краткосрочное прогнозирование собственного почасового электропотребления (short-term load forecasting - STLF). Ошибки прогнозирования электропотребления затрудняют оптимизацию режима ЕЭС, что, в свою очередь, приводит к необоснованным пускам и остановам генерирующего оборудования, выбору неоптимальной схемы электрических сетей и т.д. В случае прогнозирования электропотребления сельскохозяйственных потребителей, помимо стандартных факторов на результаты прогноза влияют дополнительные факторы, такие как состояние питающих и распределительных сетей 6-110 кВ, более сильная чувствительность на перепады температур и т.д.

В настоящее время, торговля отклонениями фактического электропотребления от прогнозного осуществляется таким образом, чтобы стимулировать крупных покупателей электроэнергии придерживаться собственных прогнозов, то есть, покупка электроэнергии происходит по более высокой цене, а продажа

по более низкой. Помимо убытков для участников рынка, ошибки прогнозирования приводят к увеличению цены на электроэнергии для конечных потребителей на розничных рынках электроэнергии за счет увеличения стоимостного рыночного небаланса.

В соответствии с действующим законодательством в сфере электроэнергетики, а именно Правилами оптового рынка электроэнергии и мощности (ОР-ЭМ) (Постановление правительства Российской Федерации от 27.12.2010 № 1172), субъектный состав оптового рынка определяется в соответствии Федеральным законом от 26.03.2003 № 35-ФЗ «Об электроэнергетике». Одними из основных игроков на ОРЭМ являются гарантирующие поставщики электроэнергии (ГП), осуществляющие покупку и продажу электроэнергии с помощью зарегистрированных групп точек поставки (ГТП). Группа точек поставки подразумевает под собой условную точку в энергосистеме, которая используется для определения и исполнения обязательств по оплате электроэнергии на ОР-ЭМ. Физически, ГТП ГП представляет собой часть зоны обслуживания гарантирующего поставщика, питающихся от одной или нескольких узловых подстанций напряжением свыше 110 кВ, относящиеся к единому узлу расчетной модели энергосистемы РФ. Особенностью функционирования ГП в Алтайском крае является тот факт, что большая часть территории края приходится на сельскую местность.

Электропотребление любого объекта, в том числе ГТП ГП, имеет корреляционную связь с множеством факторов, в том числе недетерминированного характера [1]. Краткосрочное прогнозирование почасовой электрической нагрузки (ЭН) данного объекта относится к слабоформализуемым задачам. До недавнего времени, единственным адекватным методом при прогнозировании электрических нагрузок сложных объектов являлся метод экспертных оценок. Однако, в следствии человеческого фактора и прочих причин, повышение точности прогноза, полученного с помощью экспертного метода, выше определенного уровня является невыполнимой задачей. В соответствии с положениями Национальной стратегии развития искусственного интеллекта на период до 2030 года [2], при решении слабоформализуемых задач прогноза, планирования целесообразно применять современные интеллектуальные методы обработки информации, такие как методы искусственных нейронных сетей (ИНС) и глубокого машинного обучения.

Как было выяснено ранее [3-5], на электропотребление ГТП ГП, находящейся в сельской местности влияет ряд дополнительных факторов. В этой связи, достаточно остро стоят вопросы выбора метода и алгоритма краткосрочного прогнозирования почасовой электрической нагрузки ГТП сельхозпроизводителей. Существующие модели прогнозирования ЭН, как правило, основаны на устаревших методах искусственного интеллекта: методе опорных векторов, методе главных компонент, персептронные сети различной конфигурации и т.д. На сегодняшний день, лидирующие позиции в области машинного обучения, занимают глубокие нейросетевые модели, к которым относятся сети свертки, рекуррентные нейронные сети [6].

В связи с учетом допонительных факторов, нейросетевые модели прогнозирования электропотребления ГТП ГП, в силу большего количества свободных параметров, подвергающихся оптимизации при обучении ИНС, сильнее подвержены эффектам переобучения и затормаживания в локальных минимумах на поверхности ошибки. Традиционные методы борьбы с переобучением, к которым относятся случайное прореживание синаптических связей ИНС [7] и пакетная нормализация входных данных (Batchnormalization) [8], малопригодны для прогнозирования временных рядов, так как нарушают внутреннюю структуру данных, обусловленную фактором времени. Эффективными методами снижения эффекта переобучения ИНС являются методы соединения нескольких нейронных сетей в ансамбль и ранняя остановка алгоритма обучения ИНС после достижения требуемой обобщающей способности сети.

Целью данной работы является анализ эффективности использования современных нейросетевых моделей для краткорочного прогнозирования электропотребления ГТП ГП, находящихся в сельской местности.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Разработать нейросетевую математическую модель почасового электропотребления ГТП ГП находящихся в сельской местности, учитывающую стандартные временные и метеорологические факторы, а также факторы инерционности изменения электропотребления по отношению к перепадам температуры внешнего воздуха, отключений электросетей 6–110 кВ, режима работы крупных потребителей электроэнергии, в том числе сельхозпроизводителей, наличия центрального отопления и водоснабжения в отдельных населенных пунктах, питающихся от ГТП ГП;
- 2. Произвести оценку эффективности применения разработанных нейросетевой модели для краткосрочного прогнозирования почасового электропотребления ГТП ГП, находящихся в сельской местности.

В основной части данной исследовательской работы произведена оценка погрешности краткосрочного прогнозирования почасовой ЭН ГТП ГП разработанных нейросетевых моделей на фактических данных, полученных с помощью многослойного персептрона (MLP), одномерной сети свертки (1D_CNN), двухмерной сети свертки (2D_CNN), рекуррентной нейросети типа долго-краткосрочной памяти (LSTM) и ансамбля ИНС (Ensemble). Также, произведена оценка погрешности разработанных ИНС и метода экспертных оценок, используемого в качестве базового метода прогнозирования ЭП большинством энергосбытовых предприятий. Экспертами выступили сотрудники отдела работы на оптовом рынке АО «Алтайкрайэнерго», имеющие стаж работы более 10-ти лет в области краткосрочного прогнозирования ЭН для покупки электроэнергии на ОРЭМ. Краткосрочное прогнозирование ЭН осуществлялось в ГТП ГП «Южная» в соответствии с регламентом «рынка на сутки вперед». В таблице 1 представлены результаты прогнозирования почасовой электрической

нагрузки ГТП «Южная», полученных с помощью нейросетевых моделей и метода экспертных оценок за ноябрь 2019 года.

Таблица 1 - Результаты прогнозирования почасовой электрической нагрузки ГТП «Южная», полученных с помощью нейросетевых моделей и метода экспертных оценок за ноябрь 2019 года

Дата	MLP	1D_CNN	LSTM	3D_CNN	Ансамбль ИНС	Метод экс- пертных оценок
Среднемесячная абсолютная ошибка М(б), %	1.53	1.54	1.52	1.56	1.37	1.59
CΚΟ σ(δ),%	0.53	0.40	0.53	0.55	0.49	0.74
Доверительное отклонение <i>s</i> ,%	0.19	0.15	0.19	0.20	0.18	0.27

Как мы видим из таблицы 1, все разработанные нейросетевые прогнозные алгоритмы продемонстрировали снижение среднемесячной ошибки прогнозирования, по сравнению с ошибкой прогноза метода экспертных. Применение ансамбля ИНС при прогнозировании почасовой ЭН ГТП ГП в режиме «на сутки вперед» на фактических данных позволило:

- уменьшить среднемесячную абсолютную процентную погрешность прогноза на 0,16%, по отношению к результату прогноза, полученного с помощью многослойного персептрона,
- снизить погрешность прогноза на 0,22% по отношении к погрешности прогноза метода экспертных оценок.

Также, можно утверждать, что прогноз, полученный с помощью ансамбля ИНС имеет наименьшее среднеквадратичное отклонение.

После апробации разработанных моделей на фактических данных на протяжении месячного интервала, произведена оценка погрешности прогноза ансамбля ИНС и метода экспертных оценок на годовом интервале. В таблице 2 представлены среднемесячные абсолютные погрешности краткосрочного прогноза почасовой электрической нагрузки ГТП Южная по месяцам 2020 года.

Из таблицы 2 видно, что применение ансамбля ИНС для краткосрочного прогнозирования почасовой ЭН ГТП ГП позволило уменьшить среднемесячную абсолютную процентную погрешность прогноза на 0,14 % на протяжении годового интервала, в сравнении с результатами прогноза, полученного на основе метода экспертных оценок. Однако, стоит отметить, что метод на основе

ИНС показал большую погрешность прогноза в мае и сентябре 2020 года. Это можно объяснить тем, что прогнозные модели, основанные на ИНС, склонны к статистическому усреднению. Данные модели демонстрируют более высокую погрешность прогноза в условиях резкого изменения влияющих факторов: большие перепады температуры в течение суток, уход (выход) образовательных учреждений на каникулы, изменение режима работы центрального отопления и т.д.

Таблица 2 - Среднемесячные абсолютные погрешности краткосрочного прогноза почасовой электрической нагрузки ГТП Южная по месяцам 2020 года.

Месяц	Среднемесячная абсолютная процентная погрешность прогноза δ, %			
·	Метод экспертных оценок	Ансамбль ИНС		
январь	1.93	1.90		
февраль	1.84	1.65		
март	2.04	1.96		
апрель	2.81	2.65		
май	3.14	3.53		
июнь	2.97	2.62		
июль	2.83	2.48		
август	2.92	2.72		
сентябрь	3.39	3.61		
октябрь	2.68	2.26		
ноябрь	2.39	2.06		
декабрь	2.19	1.94		
Среднегодовая ошибка М(δ)	2.59	2.45		
CKO σ(δ)	0.51	0.62		
Доверительное отклонение <i>s</i>	0.33	0.40		

Апробация ансамблевого нейросетевого алгоритма прогнозирования почасового электропотребления ГТП ГП, расположенных в сельской местности на актуальных данных подтвердила эффективность его использования. Снижение среднемесячной ошибки прогнозирования в режиме прогноза «на сутки вперед» составило 0,16 %, по сравнению с ошибкой прогноза, полученного с помощью трехслойного персептрона, и на 0,22 % по сравнению ошибкой прогноза, полученного с помощью метода экспертных оценок. На годовом интервале снижение средней ошибки составило 0,14 %, по сравнению с прогнозом метода экспертных оценок.

Список используемой литературы

- 1. Short-term load forecasting using EMD-LSTM neural networks with a XGBOOSt algorithm for feature importance evaluation / H. Zheng, J. Yuan, L. Chen // Energies. 2017. Vol. 10. P. 1–20. DOI: https://doi.org/10.3390/en10081168 Текст непосредственный.
- 2. Национальная стратегия развития искусственного интеллекта на период до 2030 года. Текст электронный. URL: http://www.kremlin.ru/acts/bank/44731 (Дата обращения 20.10.2023)
- 3. Серебряков, Н. А. Анализ факторов, влияющих на совокупное электропотребление гарантирующего поставщика / Н. А. Серебряков // Вестник Иркутского государственного технического университета. 2020. Т. 24. № 2. С. 366–381. DOI : https://doi.org/10.21285/1814-3520-2020-2-366-381 Текст непосредственный.
- 4. Хомутов, С. О. Влияние метеорологических факторов на режим потребления электроэнергии группы точек поставки электроэнергии сельскохозяйственных товаропроизводителей / С. О. Хомутов, Н. А. Серебряков // Вестник Алтайского государственного аграрного университета. − 2019. − № 5 (175). − С. 148-153. − Текст непосредственный.
- 5. Серебряков, Н. А. Анализ случайной составляющей временного ряда электрической нагрузки группы точек поставки электроэнергии сельхозпроизводителей / Н. А. Серебряков, С. О. Хомутов // Вестник Алтайского государственного аграрного университета. − 2019. − № 5 (175). − С. 153-158. − Текст непосредственный.
- 6. Шолле, Ф. Глубокое обучение на Python / Ф. Шолле ; пер. с англ. А. Киселев ; под общ. ред. Л. А. Волковой. Санкт Петербург : Питер, 2018. 400 с. : ил. ISBN 978-5-4461-0770-4. Текст непосредственный.
- 7. Dropout: a simple way to prevent neural networks from overfitting / N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov // Journal of Machine Learning Research. 2014. Vol. 15. Р. 1929-1958. Текст непосредственный.
- 8. Batch Normalization: Accelerating deep network training by reducing internal covariate shift / S. Iofee, C. Szegedy. Текст электронный. URL: https://arxiv.org/pdf/1502.03167.pdf (дата обращения: 02.03.2023).

Информация об авторах

Серебряков Н. А. – к.т.н., доцент, $\Phi\Gamma$ БОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.

Ссылка для цитирования

Серебряков, Н. А. Прогнозирование электрической нагрузки сельскохозпроизводителей с помощью нейросетевых моделей / Н. А. Серебряков // Энерджинет. 2023. № 1. URL: http://nopak.ru/231-704 (дата обращения: 25.10.2023).

